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1 Introduction

This note is about computing the shape of the 1D or 2D star images that FAME collects and sends

to the ground, one per observation. It is an attempt to represent in mathematical notation all of

the non-stochastic e�ects that contribute to the observed image. This is important if we wish to

construct a template function for centroiding that contains as much a priori information as possible.

In particular, it would seem that such a computation would be necessary if we wish to connect the

template function to the position of the observed star on the sky. Using a tailored template function

for each observation may not be the only way to successfully perform the centroiding operation

for FAME, but analysis by Makarov [1] indicates that this scheme has the potential to virtually

eliminate centroiding bias.

In this note I make a distinction between the observed image and the observational pro�le.

As used here, the observed image is the ensemble of pixel intensities as received for a particular

observation. The observational pro�le is the underlying shape of the of the image in the oversampled

and noise-free case | essentially, the parent function from which the observation is drawn.

2 Observation Description

FAME will have 13 CCDs in its focal plane, each of which contains 2048 � 4096 pixels. As FAME

rotates, the star images move across the focal plane. The direction of image movement in the focal

plane is referred to as the in-scan direction, and is described by the coordinate u; the orthogonal

direction is called cross-scan, and is described by the coordinate v. The (u; v) origin is at the center

of the focal plane and u increases in the direction of star image motion. The CCDs operate in TDI
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mode, with the charge following the star images as they move across the chips. All of the CCDs are

oriented with their long dimensions in the in-scan direction. It takes 2.24 seconds for a star image

to move across one CCD, and a star image may cross several CCDs in succession. The CCD pixel

size, 15 �m, projects onto the sky as 0.295 arcsec. The core of the point-spread function (PSF) of

the instrument is approximately 1.5 pixels FWHM in the in-scan direction and 5 pixels wide in the

cross-scan direction. The exact PSF depends on the star's spectral type and the position of the

star image in the focal plane.

Each observation represents the charge accumulated on a small rectangular area of one CCD,

13 pixels in-scan by 24 pixels cross-scan, that is centered on the point-spread-function (PSF) of the

star observed. This observational \postage stamp" can be thought of as a group of virtual pixels

that moves with the star across the CCD; at di�erent times, di�erent groups of physical pixels are

involved. Because the postage stamp is co-moving with the star, the 2.24-second crossing time of

the star image across the CCD is the integration time of the observation.

There are two important aspects of the TDI clocking that a�ect the �nal image shape. First,

although the star image moves smoothly across the CCD, the charge can only be moved in discreet

one-pixel steps. This introduces a one-pixel smearing into each image in the in-scan direction,

essentially the PSF convolved with a one-pixel-wide boxcar function. Secondly, the TDI rate is

not, in general, matched exactly to the star image motion rate. So, as the star image moves across

the CCD, the charge concentration near the center of the postage stamp gradually shifts either

behind or ahead of the star image, causing further smearing. This \TDI mismatch" is supposed to

be limited to not more than about one pixel during one 2.24-second integration time. In attempting

to predict an observation pro�le, it is clear that we need to distinguish between the photon centroid

(the PSF) and the charge centroid and to separately account for their positions on the focal plane

as a function of time.

Furthermore, the PSF is itself problematic; we actually have to deal with a large family of

PSF functions. The PSF for a particular star is essentially the sum of a series of monochromatic

PSFs, weighted by the received stellar photon ux as a function of wavelength. The width of each

monochromatic PSF is directly proportional to its wavelength, but the exact shape depends on

the position in the focal plane. Furthermore, because FAME's optical design has signi�cant lateral

color separation (for our application), the peaks of the monochromic PSFs are not coincident and

these o�sets too are a function of position on the focal plane. Therefore, apart from the TDI

considerations, the charge moving across a CCD reects the accumulation of electrons from a

continuously changing parent distribution (or set of parent distributions).

People sometimes use the phrase \observed PSFs". For the case of FAME, this is a misuse of

the term PSF and can lead to sloppy thinking. FAME does not observe the instrumental PSF; the

observed image is the product of many processes acting on an entire ensemble of PSFs.
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Since all of these e�ects depend critically on the star image position in the focal plane as

a function of time, that position must be continuously | and accurately | modeled. FAME's

rotation is complex on small angular scales and includes both precession and nutation components.

The precession imparts a signi�cant cross-scan motion (up to 4 pixels per crossing time) to the star

images. At the precision with which FAME must operate, higher-order rotational motions may be

important as well, even over time scales as short as several seconds. Assuming a linear track of the

star image across a CCD may not be su�cient for computing an accurate observational pro�le.

3 De�nitions

We must �rst decide what we mean by the position of a star in the focal plane at some instant.

This is not a trivial exercise since we could not observe the star as a point even if FAME had no

rotation and the CCDs were operated in \stare" mode. What we would observe in that case is

a distribution of photons that is not unique for the star's position on the sky; if the star's color

were to change, the center of the distribution would also change. Of course, for our de�nition we

could pick a speci�c wavelength near the center of the observing band, say 700 nm. But 700 nm

is unlikely to be either the peak or average wavelength of the photon ux of a particular star.

Furthermore, choosing one special wavelength would mean that all color-dependent e�ects would

then be measured relative to our choice.

Therefore I propose that the geometric position of a star in the focal plane, p? = (u?; v?), be

de�ned as the two-dimensional position (at some speci�c time) of the apex of the converging bundle

of rays from the star, assuming perfect geometric optics. In this geometric de�nition the optical

system is assumed to have no distortion and no color separation. \No distortion" means that the

mapping from the celestial sphere onto the focal plane has a constant scale, so that equal arcs on

the sky anywhere in the �eld of view map to equal linear separations in the focal plane. (This has

been the design goal for the FAME optics, although it is not the more common gnomic projection.)

In essence, the geometric position of the star is is an imaginary point in an imaginary optical system

| the only attribute it shares with the real system is the focal length | but it provides a point

of reference for the rest of the development. This point can be easily related to a position on the

celestial sphere.

Suppose pp(p?; �) = (up; vp) is the focal plane position of the peak (maximum) of the monochro-

matic PSF, at wavelength �, of the star at geometric position p?. (We assume the star is a point

source.) Then the distortion of the optical system can be operationally de�ned as the di�erence

between these two positions. The distortion D is a vector function of wavelength and position on
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the focal plane:

D(u; v; �) = pp(p?; �)� p? =
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(1)

We assume that jDj is everywhere quite small compared to the focal plane dimensions and that

the variation of D is negligible over lengths of order jDj; therefore it is not actually necessary to

distinguish whether u and v in D(u; v; �) refer to the position of the PSF or the geometric position

of the star. For speci�city, we will put u = u? and v = v?. This de�nition of distortion contains

the lateral color separation of the instrument, so a separate accounting of that does not have to

be made. Although this de�nition uses the peak of the PSF as the basic reference point, some

other well-de�ned point within the PSF | such as the �rst moment | could be used instead,

as long as the functional form of the PSF could be developed with respect to the chosen point.

In fact, the optical-design software ZEMAX produces computed PSF functions with respect to a

2D coordinate system that is centered at the geometric position of the star. In such a case, D

e�ectively disappears as a separate entity.

The object of the game is to estimate the counts of electrons in the observational postage

stamp due to received photons (this note does not concern itself with electronic noise). There are

two separate problems: the �rst is to compute the counts on a per-pixel basis, that is, to predict

what the actual observational image would be. But the FAME image is somewhat undersampled

in the in-scan direction, that is, the PSF extends over only a small number of pixels. Therefore,

the distribution of counts in the image is very sensitive to small changes in the star's focal plane

position, due to bad a priori astrometry or incorrect modeling of any number of e�ects. So if we

want to compute what I call the observational pro�le | the shape of the image in the oversampled

and noise-free limit | we need to divide the postage stamp into much smaller computational units

called subpixels. For simplicity, I assume that the subpixel width is just the pixel width divided by

an integer, k, that we can set. To compute the pro�le, then, the postage stamp becomes a much

�ner mosaic of in�nitesimal areas, made up of a large number of subpixels: k
2 times the number

of pixels (the latter is usually 13� 24). Computing the counts in the actual observation then can

be considered to be a special case of subpixelation where k = 1 so that the subpixels are pixels. Of

course, we can always compute pixel counts after the fact regardless of the size of the subpixels.

With these basic de�nitions in hand, we can go on to describe other quantities and functions.

I assume that all the pixels on a CCD have the same sensitivity, that the sensitivity is uniform

within a pixel, and that there is no \dead space" between pixels or near their edge. I also assume

that in TDI mode, at each row-shift epoch, the entire charge in one row of pixels is transferred

instantaneously, without noise or loss, to the next row and entirely replaces the previous charge in

that row. At some level these assumptions are not true, of course, but once the basic development

is presented it is easier to see how more realistic models can be incorporated, and some comments
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on that will be presented in Section 7. Mention is made below of the \lower left corner" of various

entities on the focal plane. This refers to the focal plane as usually drawn, with u increasing to

the right and v increasing upward. The lower left corner is then the corner with minimum u and

minimum v.

p?(t) = (u?(t); v?(t)) Track of geometric position of the star across the focal plane.

P (x; y; u; v; �) Normalized point-spread function at wavelength � with maximum

at (u; v) in the focal plane. x and y are measured in the u and

v directions, respectively, from the maximum. P encompasses a

family of surfaces in (x; y), one at each point in (u; v; �) parameter

space. Units are area�1. Normalization means that at a given

(u; v; �), the volume under the P (x; y) surface is 1.

T (�) Normalized throughput of instrument system at wavelength �, in-

cluding factors from CCD quantum e�ciency, �lters, light loss due

to optical coatings and materials, and deposition. We assume here

that T is a constant for any one CCD. Normalization means that

the area under the curve is 1.

S(�) Stellar spectrum | the natural photon ux from a star, as a func-

tion of wavelength, through one of the instrument apertures (40 �
9 cm2). Expressed as number of photons/second/unit wavelength.

W Width of a pixel (assumed square) in units of u or v.

w Width of a subpixel (assumed square) in units of u or v, equal to

W divided by an integer k.

k Number of subpixel widths in a pixel width, an integer. The number

of subpixels in a pixel is k2. A special case is W=w and k=1, where

the subpixels and pixels are the same.

n;m Dimension of the postage stamp expressed as number of subpixels

in u and v directions, respectively. The normal size of the postage

stamp is n = 13k and m = 24k.

i; j Subpixel index within the postage stamp, integers. 0 � i � n � 1

and 0 � j � m� 1. Subpixel (0,0) is at the lower left corner of the

postage stamp.
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u
0

; v
0 Focal-plane coordinates within the postage stamp with respect to

its lower left corner. u
0 and v

0 are real and non-negative and run

from (0,0) to (nw,mw). Pixel borders are at values of u0 and v
0 that

are integer multiples of W; subpixel borders are at integer multiples

of w.

Note that since the postage stamp is shifted across the CCD at

the TDI rate, i, j, u0, and v
0 can be considered to be in a moving

reference frame.

u0; v0 u and v coordinates of the lower left corner of the photosensitive

area of the CCD, speci�cally, the lower left corner of CCD pixel

(0,0).

t0 Time at which the leading (right) row of pixels in the postage stamp

�rst appears at physical row 0 of CCD.

c0 Physical column number of CCD corresponding to lowest column

of pixels in the postage stamp.

TDI TDI rate expressed as number of pixel rows shifted per second.

Note that this is not a�ected by subpixelation; the charge always

shifts in units of pixels.

� Time between TDI row-shifts. � = 1=TDI. Assumed to be the

exposure time of the pixels (or subpixels) in the postage stamp at

each TDI step.

tr A row-shift epoch, the instant at which a row shift is completed.

t0 is the �rst row shift epoch relevant to a given postage stamp.

Succeeding tr's are at t0 + � , t0 + 2� , t0 + 3� , : : :

4 Basic Relations

Using the above de�nitions, we �nd the following relations:

Row number on CCD of right (lead-

ing) row of postage stamp

TDI� (tr � t0)
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u coordinate of right edge of postage

stamp

u0 + [TDI� (tr � t0) + 1]kw

u coordinate of left edge of postage

stamp (u0 = 0)

u0 + [TDI� (tr � t0) + 1]kw� nw

v coordinate of lower edge of postage

stamp (v0 = 0)

v0 + c0W

Position of peak of monochromatic

PSF at wavelength � on focal plane,

corresponding to star at geometric po-

sition p?.

pp(p?; �) = p? +D(p?; �)

u
0 coordinate of monochromatic PSF

(at wavelength �)

u
0

p = u?+ �u�u0� [TDI� (tr� t0)+1]kw + nw

where �u is the u-component of D(u?; v?; �)

v
0 coordinate of monochromatic PSF

(at wavelength �)

v
0

p = v? + �v � v0 � c0W

where �v is the v-component of D(u?; v?; �)

5 Formulas

We now come to the computation of the observational pro�le, the estimate of the intensity of every

subpixel in the postage stamp. It is advantageous to develop this computation in terms of the

moving postage stamp coordinates, so that individual postage stamp subpixels retain their identity

throughout. This means that the position of the star's monochromatic PSFs, which move with

the star across the focal plane, have to be repeatedly transformed to the postage stamp coordinate

system. Note that the PSFs are not stationary in this system, since the PSFs move continuously

whereas the postage stamp moves only at row-shift epochs. Furthermore, due to TDI mismatch,

even the average rate of motion of the PSFs and the postage stamp may not be the same.

At an arbitrary point with postage stamp coordinates (u0; v0), we �rst want to compute the

intensity of the PSF due to a star at geometric position p?(t). The monochromatic PSF of the

star at wavelength � will have its peak at pp(p?(t); �) = p?(t)+D(p?(t); �). We will designate the

postage stamp coordinates of the PSF peak simply by (u0
p
; v

0

p
), the expressions for which are given
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in the previous section. The value of the PSF at the arbitrary point will then be

P (u0 � u
0

p
; v

0� v
0

p
; u?; v?; �) (2)

where we have dropped the functional dependencies for now.

The received ux of photons through an in�nitesimal area du0 dv0 at this point, during a time

interval dt and within a wavelength interval d� centered on � is

S(�) T (�) P (u0 � u
0

p; v
0� v

0

p; u?; v?; �) du
0 dv0 d� dt (3)

The received ux of photons over the entire subpixel (i; j) that contains the point (u0; v0), and over

the entire bandwidth of the instrument is then

�2Z
�1

S(�) T (�)

(j+1)wZ
jw

(i+1)wZ
iw

P (u0 � u
0

p
; v

0 � v
0

p
; u?; v?; �) du

0 dv0 d� dt (4)

where �1 � 500 nm and �2 � 900 nm. The w's in the integration limits represent the width of

the subpixels. This expression must be integrated over time. The postage stamp is stationary on

the CCD between row shifts. The star's monochromatic PSFs are moving continuously; however,

expressed in postage stamp coordinates, their movement is continuous only over the row-shift

interval � . The interval begins at row-shift epoch tr.

tr+�Z
tr

�2Z
�1

S(�) T (�)

(j+1)wZ
jw

(i+1)wZ
iw

P (u0 � u
0

p; v
0� v

0

p; u?; v?; �) du
0 dv0 d� dt (5)

This expression represents the contribution to the electron count for subpixel (i; j) over one short

integration interval, the time between row shifts (�0.5 ms). For an observation where the pixels

never saturate (at � 105 e�) the result should be a number < 25=k2, which should be stored as

a oating-point value. For an actual observation the integer count of electrons per subpixel per

row-shift interval would come from a Poisson distribution with the above result as the mean, but

for purposes of obtaining the (noiseless) observational pro�le this detail is not relevant.

We must add up the contributions over all 4096 row shifts. In doing so, we �nally obtain the

intensity I (electron count) for subpixel (i; j) in the absence of any type of noise:

I(i; j) =
4095X
L=0

tr+�Z
tr

�2Z
�1

S(�) T (�)

(j+1)wZ
jw

(i+1)wZ
iw

P (u0 � u
0

p; v
0 � v

0

p; u?; v?; �) du
0 dv0 d� dt (6)
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where L is the count of row shifts, tr = t0+(L+n=k�1� int[i=k] )� , and int[ ] is the largest-integer

function. The expression for tr accounts for the fact that di�erent sets of subpixels start their

exposure at di�erent times; for example, only subpixels that are in the right (leading) row of pixels

in the postage stamp begin exposure at time t0.

We use eqn. (6) to compute the intensities of all the subpixels in the postage stamp. If k � 2

this is the 2D observational pro�le. If k = 1 then the subpixels are pixels and we have directly

obtained an estimate of the 2D observed image. We can always obtain the latter from the former

simply by summing up all the subpixel intensities within each pixel. For example, suppose we want

I0(I; J), the computed intensity of pixel (I; J) in the postage stamp:

I0(I; J) =
k�1X
j=0

k�1X
i=0

I (Ik + i; Jk + j) (7)

That is the 2D image. The binned 1D image is just as easily obtained:

I00(I) =
m�1X
j=0

k�1X
i=0

I (Ik + i; j) (8)

6 Computational Strategy

The PSF integrand P (: : :) in eqn. (6) appears relatively harmless but that is only because we have

not shown the functional dependencies of its parameters. In fact, if all the functional dependencies

in P are explicitly displayed, we have

P (u0� [ u?(t) + �u(u?(t); v?(t); �)� u0 � fTDI (tr � t0) + 1gkw+ nw ];

v
0� [ v?(t) + �v(u?(t); v?(t); �)� v0 � c0W ]; (9)

u?(t); v?(t); � )

which gives a better perspective on the computational task.

Clearly at each integration point the �rst task is to obtain the geometric position of the star.

The data analysis pipeline as designed has the capability to compute the focal plane coordinates of

any star at any time, but the models it uses for this would probably not be accurate enough for the

observational pro�le calculation until a spiral reduction is completed for the rotation containing the

observation. The star motion across the focal plane is nonlinear at a level (mas) that may matter

for this computation but it should be possible to represent the track as a low-order polynomial in

time (unless jitter is signi�cant). If we leave this task to \other parts" of the pipeline then the
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rapid computation of (u?(t); v?(t)) for arbitrary times t in the above integral evaluation is not an

issue.

The distortion function D(u?(t); v?(t); �) is more of an evaluation problem. It will probably

have to be interpolated from a set of stored monochromatic distortion values for a grid of focal

plane positions, although a more convenient analytic representation may be possible. However,

the distortion does not have to be evaluated very often, because its maximum gradient for the

current (October 2001) optical design seems to be less than 10�3 (microns of distortion / microns

of focal plane position). That means that over one row-shift interval | during which the star moves

approximately one pixel | we can use a single distortion vector per wavelength, with an error that

is a fraction of the �nal centroiding accuracy requirement.

This brings us to the evaluation of the point-spread function. This requires dealing with a

library of empirically-determined PSFs across the focal plane and at various wavelengths. Rather

than attempting interpolation within such a huge number of data points, Makarov [2] shows that the

PSFs can be compactly represented by a relatively low-order �t to Hermite orthogonal functions.

Still, the numerical load involved in eqn. (6) depends critically on how many times the PSF-

evaluation routine has to be interrogated. Clearly, eqn. (6) seems to imply a very large number of

such operations. To be more quantitative about it, we have to know how accurate the integrations

need to be | information that depends on the required accuracy of the result.

Valeri's tech note [1] concluded that to eliminate centroiding biases the template function must

match the actual observational pro�le to 0.5% for FAME's 550{850 nm bandpass. This would be

the accuracy with which each of the subpixel intensities I(i; j) should be computed using eqn. (6).

Assuming we know the on-orbit PSFs to in�nite precision (somewhat of a stretch!) how good

do the integrals have to be? Well, the subpixel intensities I(i; j) involve a summation over 4096

row-shifts. Since the star image stays near the center of the postage stamp the entire time, it is

not too much of an approximation to say that the �nal computed intensity of any given subpixel

is the result of the sum of 4096 nearly-equal contributions. If the numerical error in each of these

contributions is uncorrelated and noise-like, then the fractional error of each needs to be not worse

than
p
4096 � the required fractional error of the result, i.e., 64 � 0.5% = 32%. 1

That's pretty good news, and leads us to hope that the integrals in eqn. (6) can be evaluated

with simple summations and that sophisticated numerical methods will not be required. In playing

around with the sinc function and its �rst two derivatives, it seemed to me that we could do quite

well without actually doing the surface integral (
R R

� � �du0dv0) at all if the subpixels were small

enough: simply multiply the value of P for the center of the subpixel by the subpixel area (w2).

The result is exact in the case where the P (u0; v0) surface has no curvature over the subpixel. That

1Beware of possible swindle here: : : check logic carefully! Note that, in any case, the 32% tolerance does not apply

to errors that would systematically a�ect all the contributions, such as an incorrectly computed star track.
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is not the case but the error for this part of the calculation will certainly be less than 32% (except

near the zeros of P , which are not important for centroiding) as long as k ��4. We probably need

k � 4 anyway just to get adequate spatial sampling of the observation pro�le.

That leaves us with the two outer integrals in eqn. (6). Several people have been constructing

polychromatic PSFs by adding together, for each one, about ten monochromatic PSFs. Based on

this work I will propose a simple summation over nine 50-nm wavelength intervals as adequate

without attempting any further analysis. The outermost integral is over time and accounts for the

changing position of the PSF during one row-shift interval. The star's PSF moves about one pixel

per row-shift interval � , or one subpixel in �=k. Since we have accepted one subpixel as an adequate

di�erential area (as long as k � 4) for sampling the PSF function P to the required accuracy, it is

reasonable to set �=k as the di�erential time interval for the outermost integral.

So the form of eqn. (6) for practical evaluation becomes

I(i; j) =
4095X
L=0

kX
�=1

9X
l=1

S(�l) T (�l) P ( (i+
1

2
)w� u

0

p; (j +
1

2
)w� v

0

p; u?(t�); v?(t�); �l ) w
2���t

(10)

where tr = t0+ ( L+ n=k � 1� int[i=k] ) �

t� = tr+ ( (�� 1

2
)=k ) �

�l = 50l+ 450

�� = 50

�t = �=k

u
0

p
= u?(t�) + �u(u?(t1); v?(t1); �l)� u0 � fTDI (tr � t0) + 1gkw+ nw

v
0

p = v?(t�) + �v(u?(t1); v?(t1); �l)� v0 � c0W

and where �l and �� are expressed in nanometers (nm),

the distortion o�sets �u and �v are evaluated only once per row-shift interval

(each L) for each wavelength �l, using the star position at time t1, and

u?(t) and v?(t) are low-order polynomials in t.
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7 Concluding Remarks

The number of times the function P has to be evaluated in eqn. (10) is 4096 �k� 9 = 36,864k. But

to obtain the entire observational pro�le I(i; j) has to be evaluated 13k � 24k times. So the �nal

number of evaluations of P for the entire postage stamp is 1:15� 107 k3. Needless to say, that's a

lot of CPU cycles, even if P can be e�ciently evaluated.

All kinds of computational shortcuts suggest themselves. For example, since P is much wider

in the cross-scan than in-scan direction, we could create subpixels that were much taller than wide.

We would end up with two values for w (wu and wv) and two values for k (ku and kv), for the

in-scan and cross-scan directions, respectively. Since kv � ku=4, it is possible that we could get

away with kv = 1. Generalizing eqn. (10) in such a way is quite simple.

Furthermore, there is no requirement that the value of k be the same for all the virtual pixels

in the postage stamp. The maximum value of k (whatever value is chosen) is needed only near the

center of the PSF. Lower spatial resolutions would su�ce for the wings. So a factor of two or three

in computational speed for the entire postage stamp could be obtained just by making k a function

of i and j. Such a strategy would not change eqn. (10).

The summation over wavelength intervals also deserves a look. It is possible that there might

be no signi�cant loss of precision in reducing the number of wavelength intervals. Or, instead of

storing nine monochromatic PSF functions for each area on the focal plane, and an equal number

of monochromatic distortion vectors, perhaps it would be more e�cient to store a set of pre-

computed polychromatic PSFs for each area, one for each of 10 or so values of a star's e�ective

surface temperature (Te�). Such a scheme would turn the summation over wavelength intervals

into an interpolation along the Te� axis. This kind of interpolation (if e�ciently implemented)

would likely involve fewer evaluations of P than the summation, albeit at a small cost in additional

overhead.

Of course, the only way to reliably assess any option for evaluating eqn. (10) is to try it. We

assume that the results of eqn. (10) asymptotically approach \truth" (within the limits of the crude

model of the CCD on which it is based) as k increases. The results of any computational shortcuts

| including successively smaller values of k | should be evaluated against the large-k case.

On the other hand, it might be necessary to make eqn. (10) more complicated, to incorporate

a more realistic CCD model. For example, if the CCD pixels do not all have the same sensitivity,

then we would have to keep track of which CCD pixel includes subpixel (i; j) of the postage

stamp during each row-shift interval, and apply the appropriate sensitivity factor. Other possible

extensions include taking account of the border of reduced sensitivity around each CCD pixel, and

a three-phase charge transfer cycle at each row shift.
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Finally, could eqn. (10), or something comparable, be used for actual data analysis? Unfor-

tunately, it appears that this would be several orders of magnitude too slow. On my 1.5 GHz

PC, evaluation of a simpli�ed version of eqn. (10) using a 2D single-precision sinc2 function as the

PSF takes about a half second, and an entire 13 � 24 postage stamp with k=4 takes about 30

minutes! Admittedly, this is without any of the above-mentioned shortcuts, and the executable was

generated by an old 16-bit Fortran compiler. Still, coding eqn. (10) in C on a fast machine, with all

possible computational shortcuts implemented, is unlikely to reduce the total evaluation time per

postage stamp below a minute or so. We will be receiving several hundred observations per second!

(This could also be a problem for the data simulator, which will have to incorporate some process

analogous to eqn. (10) to generate realistic observed images.) The usefulness of eqn. (10) will

probably be in providing \truth" data to compare to more e�cient means of generating template

functions for centroiding. Or, if it turns out that the observational pro�les are relatively insensitive

to things like star-path curvature and CCD column number, it might make sense to use eqn. (10)

to pre-compute a large library of observational pro�les that could be rapidly interpolated during

data analysis.
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